加入收藏 | 设为首页 | 会员中心 | 我要投稿 187手机网 (https://www.187shouji.com/)- oppo手机、手机助手、华为手机、安卓手机、苹果手机!
当前位置: 首页 > 4G频道 > 通讯 > 正文

北大教授:超级计算机计算性能提升速度是"十年千倍"

发布时间:2020-06-02 21:56:05 所属栏目:通讯 来源:网络整理
导读:北大教授:超级计算机计算性能提升速度是

对于业界角色。我在2000年成立联科集团,所做的事情就是把高性能计算与大数据、AI连接起来为各个行业提供服务。我们的服务领域包括金融工程、商业智能、环境科技、智慧城市、互联网应用、教育与培训,每个方向都有很多很有趣的服务与案例,我们的客户是包括了几百所国际级、国家级机构。我们做的事情从预测明天股票期权的上落,到预测你所在的城市明天的空气污染,这些事情都是我们每天用高性能计算与AI一起解决的问题。

我们今天的主题就是联科20年来努力的方向, 有清晰的现实价值,而且就在我们身边每天都在发生,是我们每天都在使用、都在努力的方向。我就介绍到这里。下面的讨论,我希望更多用业界的角色和各位老师讨论。

董彬:下面请厦门大学的熊涛老师分享,谈谈对今天这个主题的看法。

熊涛:首先非常感谢未来论坛的邀请,有机会参与这个活动。我来自厦门大学数学科学学院,我的专业就是计算数学。我的研究方向主要是关于计算流体力学,动理学方程的高精度数值方法。动理学方程刚才在李若老师和明平兵老师的报告中都提到了。我的研究兴趣、研究内容分以下几个方面,第一个是双曲守恒系统,计算流体力学和动理学方程都可以说是双曲系统,我主要关心它们的高精度的保界算法,比如最大值原理的保界算法、保物理量正性的算法、保能量稳定和守恒的算法,动理学方程的时空一致稳定性算法,比如显式和隐式结合的高精度渐近保持算法。第三类是关于守恒型的有限差分半拉格朗日方法,这个方法主要是介于拉格朗日和欧拉方法中间的方法。我的主要研究是关于高精度算法,这里简单介绍一下高精度算法,为什么研究高精度算法,它有什么好处。

我主要说两个。第一,它是高效的算法。相对低精度算法而言,因为有更快的网格收敛速度。这里的公式对于高精度算法而言在空间和时间上的收敛速度,比如p和q次,相比一阶算法而言,收敛速度要快得多。(图)CPU时间和误差,对不同精度算法的比较图。我们有三条斜线代表一阶、二阶、三阶算法,有一条竖线代表同样CPU时间下(CPU时间和网格尺寸和时间步长有关系),相同CPU时间下高精度算法达到的误差明显比一阶、二阶算法小的多。从另外一个方面讲,如果想达到同样的误差水平,可以看到高精度算法的CPU时间要小得多。

第二个是高精度算法的高分辨率。高分辨率对解的表达能力好得多。这里比较了二阶算法和三阶算法。二阶算法,如果算这样一个问题算到后面基本上看不清楚了,但是采用三阶算法明显好得多。通常来说从二阶到三阶是有本质变化的。

这是高精度算法的优势,但要发展高精度算法也有一些核心问题,主要是鲁棒性问题,包括算法的稳定性、健壮性和高效性,这和设计保结构算法、保能量算法非常相关,这里举一个例子,模拟物理上的冲击波,一个波从原点往外传播的过程,波在蓝色区域密度非常接近于零,如果没有保物理特性密度为正,这个算法一般是算不过去的。另外一方面在波前,如果不采用高精度算法是很难捕捉到这个比较尖锐的波前的峰值的。

我的介绍就到这里,谢谢大家。

问题一:怎么用机器学习来解决科学计算,同样怎么用科学计算来解决机器学习的问题,评价标准又是怎么样,两个评价体系不一样,关心的问题有相通之处,做交叉的时候有什么要注意的?

李若:我个人对AI方面是不大懂的,几乎所有的知识都是各位教给我的。首先就像问题里面说的,大家现在显然对机器学习是有一定的怀疑,我想怀疑的主要可能是认为它的可靠性,它在验证中在事实中是如此可靠,但是我们数学上从理论上什么都给不出。我现在想介绍的是关于做模型优化的这个思路,主要的目标也是希望说我们到底把科学计算的目标定在哪儿?过去我们教科书上解的每一个问题都是希望解所有问题。但是真的面对科学问题,我们大可不必把自己的目标定在解决形式上的我们所写出来的那个问题的所有问题,我们哪怕写了一个1023维的薛定谔方程,但是事实上我们真正关心的还是现实的世界,我们所制造的药物分子,它的电子到底是怎么分布的。所以我们面对这样一个特殊的实际,然后去寻找解,本身真正就有低维的结构,并且把这种结构融合到我们内心里认为非常可靠的科学的模型上,有可能使得我们下一步的计算看到新的机会。

史作强:这个问题对我来讲有点大,因为科学计算也是非常大的领域,有各种不同的问题,我个人稍微了解一点的就是某些具体的偏微分方程的数值的方法,怎么样用PDE来帮助我们理解这个偏微分方程。如果大的角度来讲,想从做科学计算的这些研究人员想做一些机器学习的问题,最重要的就是一个转化的过程,我们需要把机器学习里面的那些问题用我们熟悉的科学计算的语言或者这样的数学工具,把机器学习的问题转化成我们熟悉的这些东西,这个是我个人觉得非常重要的一步。只有这个转化了之后,才能用我们科学计算的这些人比较熟悉的工具来研究那样的问题,这对我们来讲我觉得是最重要的一步,如果完成这个转化之后,后面的事情对我们来讲就比较好办了。如果变成了我们熟悉的科学计算问题,我们可以利用各种各样我们熟悉的东西来处理它。

刚才我看到主题里还有一个是什么问题是最好的?我觉得这个问题就因人而异了。一般来讲你能够转化成你熟悉的问题对你来说就是最好的问题,大家背景不一样,每个人熟悉的领域不一样,同样一个机器学习里的问题,不同人看它的角度是不一样的,只要你能够把那个问题转化成你所熟悉的问题,那这个问题对你来讲就是一个好问题。所以“最好的问题”这不太好说。

(编辑:187手机网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读